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A Delta-Kicked Brownian Rotor 

L. E. Reichl 1 

We study the evolution of a delta-kicked Fokker-Planck equation which is a 
certain limiting case of a driven Brownian rotor with large friction. The time 
evolution of the rotor is given by a Floquet map in which the effects of diffusion 
and of the kick are decoupled. For the case where absorbing boundaries are 
introduced, we show the mechanism causing an abrupt drop in the average 
survival time as the kick strength is increased. 
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1. I N T R O D U C T I O N  

Recently, Reichl e ta / .  (1'2) have shown that  some of the manifestations of  
chaos that  occur in quan tum systems can also be seen in the F o k k e r -  
Planck equat ion for a heavily damped,  softly driven Brownian rotor. The 
F o k k e r - P l a n c k  equat ion considered in refs. 1 and 2 was of the type 

8P 8 02P 
8t - 80 [2 sin(0 + . )  sin(cot) P ]  + Do 90---7 (1.1) 

where 0 is the angular  posit ion of the rotor, P = P(O, t) dO is the probabil i ty 
to find the ro tor  in the interval 0 ~ 0 + dO at time t, 2 is the strength of the 
driving force, c~ is a constant  phase factor, and D o is the diffusion coef- 
ficient. The authors  observed resonances between Floquet  decay rates, level 
repulsion in the Floquet  spectrum, and a fairly abrupt  drop in a certain 
mean first passage time for the problem. Chen (3~ subsequently analyzed the 
Langevin equat ion for this system and found that in the regime where 
the manifestations of chaos occur, the Langevin dynamics undergoes a 
transit ion to a type of noise-induced deterministic chaos. 
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Much of the work in refs. 1-3 was by necessity numerical since 
Eq. (1.1) is nonintegrable. In this paper, we wish to consider a some- 
what pathological variation of Eq. (1.1). We will replace the soft time 
dependence sin(cot) by a periodic delta kick 6r(t), where 

2 ~ ['27rmt'~ 

and we choose ~ = 0. Then the Fokker-Planck equation reads 

3P 3 [)~ sin(0) 6r0P] + (1.3) 
3t 30 0 302 

We can simplify Eq. (1.3) if we let t = Do and T =  ToDo. Then the Fokker-  
Planck equation takes the form 

3P 0 32P 
[2 sin(0) 6rP]  + -  (1.4) 

at 30 302 

It important to note that while Eq. (1.1) rigorously describes the large- 
friction behavior of a Brownian rotor, Eqs. (1.3) and (1.4) do not. The 
method for obtaining the large-friction behavior of a Brownian particle was 
first described by Kramers (4) and an alternative method was given by 
Brinkman. (5) In both cases, one expands the Fokker-Planck equation for 
a particle with moderate friction in powers of the inverse friction and 
retains only leading terms in the inverse friction. If a time-dependent driv- 
ing term is present, the expansion will involve the ratio of the frequency of 
the driving term to the friction. If we would truncate Eq. (1.2) to a finite 
number of cosine terms, then the truncated versions of Eqs. (1.3) and (1.4) 
would be valid equations to describe the Brownian rotor. In this paper, 
we consider the singular limit and keep the delta function. It will give an 
interesting picture of the contribution of each part of the Fokker-Planck 
equation and will shed some light on what is happening in the "soft" case. 

Delta-kicked systems have proven to be extremely useful in classical 
and quantum mechanics because they provide a means of strobing the 
system. In classical mechanics, the dynamical evolution of the delta-kicked 
rotor can be written in terms of a simple map, called the standard map. (6'7) 
The standard map maps the phase space of the rotor from one period of 
the field to the next and therefore gives a stroboscopic picture of the 
dynamical evolution of the kicked rotor. In quantum mechanics, the time 
evolution of the Schr6dinger equation for the delta-kicked rotor can be 
written in terms of a Floquet transition matrix which allows a simple 
mapping of the state of the quantum system from one period to the 
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next. (7'8) We will see that a similar mapping can be obtained for the time 
evolution of the Fokker-Planck equation (1.4). 

As we shall see, analysis of Eq. (1.4) will give us some insight into the 
behavior of the softly driven rotors because for the delta-kicked case the 
diffusion process and the kick act independently of one another. We begin 
in Section 2 by discussing the spectral properties of the kick operator and 
the diffusion operator. In Section 3 we describe how the Brownian rotor 
relaxes to equilibrium, and in Section 4 we compute the survival time for 
the case when absorbing boundaries are applied to the system. Finally, in 
Section 5 we make some concluding remarks. 

2. S P E C T R A L  P R O P E R T I E S  

It is possible to write the time evolution of the system described by 
Eq. (1.4) in terms of a transition matrix which gives the probability 
distribution at discrete times T, where T is the period of the kick. It is 
convenient to write this evolution matrix in terms of diffusion eigenstates 
and eigenstates of the kick. 

2.1. Eigenstates of  the  Kick 

If we integrate across the kick at time t = T, Eq. (1.4) takes the form 

v+ dt ~ = - dt [2 sin(0) firP] + dt 80 z 
T -  

where T -+ = T +  e and e is set to zero after the integration. However, since 
8P/Ot ~ fiT(t), the probability P(O, t) will have a discrete jump at the kicks, 
and ~ dt P(O, t) will be continuous, but will have a discontinuous slope at 
the kicks. Therefore, in the limit e ~ 0 ,  the rightmost term in Eq. (2.1) will 
not contribute. Thus, the motion across the kick is determined by the 
equation 

oP(O, t) o 
8t 80 

[2 sin(0) fiT(t) P(O, t)] = --by(t)  2s t) (2.2) 

where the "kick" operator s is defined by 

s = cos(P) + sin(P) ~0 (2.3) 
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Let us now integrate from just before the kick, t = T- ,  to just after the 
kick, t---T +. Then 

P(O, T + ) =  [exp( - -2s  P(O, T ) (2.4) 

and exp( -2LK)  is the evolution operator at the kick. 
The kick operator s is not self-adjoint and therefore has different left 

and right eigenstates. We will let T~(0) denote the right eigenstates. The 
right eigenstates satisfy the equation 

s T~(O) = ipT~(O) (2.5) 

The differential equation (2.5) has singularities at 0 = 0  and O--m 
However, we can define eigenstates on the interval 0 ~< 0 ~< ~. The right 
eigenstate is 

( 1 ) ' / 2 e x p { i # l n [ t a n ( O / 2 ) ] }  
T~(O)= (OI T .  e )  = ~ ~n--~ (2.6) 

The eigenvalues/~ can take on a continuum of values, and the spectrum of 
s is continuous. 

The left eigenvectors are eigenvectors of the adjoint operator 
s The left eigenvectors TL(0) satisfy the eigenvalue 
equation 

and are given by 

T ~/L i]~ ~ /L(o)  L K ~(0)= 

1/z {ipln [tan (2.7) 

These eigenstates are complete and orthonormal. That is, they satisfy the 
completeness condition 

f o~ L. , 
du Ou (0)0~(0)=6(0-0 ' )  (2.8) 

co 

and orthonormality condition 

f f  dO L. 0~ (0) O,R,(0) = 3(# -- #') (2.9) 

where 3 ( 0 -  0') and 6 ( # - g ' )  are Dirac delta functions (see the Appendix). 
In Fig. 1 we show a plot of Re [T~(0 ) ]  for # =9.  There are an infinite 

number of oscillations in the neighborhood of 0 = 0 and 0 = n. 
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5 

Fig. 1. A plot of Re[~Uff(0)] versus 0 for /1=9.  

8 

2.2. Eigenstates of the Diffusion Operator 

We will consider Brownian motion on the interval 0 ~ z~. Between 
kicks the rotor evolves according to the diffusion equation 

0P 02p 
Ot 002 -- s (2.10) 

The diffusion operator s = 02/(~02 is a self-adjoint operator. On the inter- 
val 0 ~< 0 ~< re, s has a discrete spectrum. If we consider periodic boundary 
conditions on the interval 0 ~ 0 ~< n, the eigenstates of s are given by 

qs,,(O) = exp(i2nO) 

where n is an integer with range - oe ~< n ~< oe. Thus 

s = -4n2~,,(0) (2.11) 

and the eigenvalues of the diffusion operator s for periodic boundary 
conditions on the interval 0 ~< 0 ~< Tc are given by - 4 n  2. 

3. RELAXATION TO EQUILIBRIUM 

The probability just before the Nth kick is related to the probability 
just before the ( N -  1)th kick by 

IP(NT-))=[exp(Ts163 IP( (N--1)T  )) (3.1) 
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and it is related to the initial state by 

IP(Nr-)) = [exp(Ts163  N I P ( 0 - ) )  (3.2) 

In order to follow the time evolution of the Brownian particle on the 
interval 0 ~ re, we can evaluate the Floquet transition operator 

12(2, T) = exp(Ts exp( -- 2s (3.3) 

with respect to eigenstates of the diffusion operator. We then obtain the 
Floquet transition matrix 

V~,,n = (n'] exp(Ts exp(--2s In) 

exp(_4n2T) f ~  e) ( L = d#(n'[~k~, [ e x p ( - i 2 # ) ]  0~[n> (3.4) 

We need expressions for the states ( n l 0 ~ )  and L ( 0  u I n ). Let us first 
R) consider ( n l 0 ~  �9 We can write 

(nlO )= dO (nlO)(OI4, ) 

1 ~ dO [ i # l n ( t a n  -x/~rc.lo ~ e x p ( - 2 i n O )  exp ~)1 (3.5) 

If we make the change of variables 0 = ~ + ~ / 2 ,  then Eq. (3.5) takes the 
form 

[ R 1 )n f~/2~--~/2 cos(~b----~d~b exp(-2in~b) 0 .  > = ( -  1 

x exp [ i# In 1 + tan(~b/2)] l ~ ~ j  (3.6) 

Let us now make a last change of variables. We let 

1 + tan(~b/2) 
x = l n  (3.7) 

1 - tan(~b/2) 

Then dx = &b/cos(~b), sin(~b)= tanh(x), and cos(~b)= sech(x), and the range 
of integration extends over the interval - oo ~< x ~< oo. (In Fig. 2 we plot x 
versus 0.) Equation (3.6) then takes the form 

(nl0 >= 2 (-1)'f2_ dxeiUXe -2j'O(x) (3.8) 
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--6' 
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8 

Similarly, 

Fig.  2. A p lo t  of  x versus  0 for  the  in terva l  0.001 ~< 0 ~< ~z - -  0.001. 

{ O ~ [ n ) = ~ 2  ( - 1 ) " ; ~ d x s e c h ( x ) e - ! ~ X e  2ino(X) 

If we make use of the definition of the Dirac delta function, 

d~e -iu(x x '):6(x_ x,) 

the Floquet transition matrix becomes 

v.,,~ = {n'l exp(Ts exp(--2s In) 

1 ( 1)"-"' exp(--4n2T) dx sech(x) 
7"E - - ~  

x exp[- -2in'(~(x + 2)] expE2in~b(x)] 

(3.9) 

This Floquet transition matrix can be used to study the distribution of 
probability after N kicks. 

As an example, consider the case when the Brownian particle is 
located a t 0 = ~ / 2  at time t = 0 - .  Then, @]P(O- ) )=6(O-~z /2 )  and 
{ n i P ( O - ) )  = ~  1/2e in~ After N kicks the probability is 

<0 
1 

7~ 
e2in,O(n, ] ~N if/) e-/,~ (3.11) 

After a long time (N --, ov ), ~ 01P(NT- ) ) ~ 1~re. 
It is interesting to find the spread of probability after one kick. The 

kick operator is basically a translation operator. At each kick it moves the 

(3.10) 
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particle  a finite d is tance  a long  the 0 axis. H o w e v e r ,  because  of  the angle  
d e p e n d e n c e  of  the k ick  operator ,  the B r o w n i a n  particle  can never  be k i cked  
past  the po ints  0 -- 0 or 0 = ~. W e  s h o w  this  in Fig.  3, where  we  start the 
particle  at 0 = ~ /2  at t ime t = 0 - .  W e  then kick  it at t ime t - - 0  and  l o o k  
at it aga in  at t ime t = T - .  W e  have  used 30 m o d e s  to represent the delta 
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it^ . . . . . . . . . . . . . . . . . . . . . . . . . .  ~A 
o rv,,+o;..---;---i ~ e - - - - . - T . o &  

Fig. 3. The upper box shows the initial state of the particle (at time t = 0 ) using 30 diffu- 
sion eigenstates. The lower three boxes show the position of the particle at time t = T for 
(in descending order) kick strengths 2 =  1, 3, and 10,000. The period between kicks was 
T= 0.0001. (The regions of negative probability occur because we have truncated the Fourier 
series after 30 terms. The regions of negative probability go to zero as the number of terms 
in the Fourier series goes to infinity.) 
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function and we have chosen T =  0.0001 so that these modes do not decay 
significantly during one period. Figure 3 shows the position of the 
Brownian particle after one kick for kick strengths 2 = 1, 3, and 10000. The 
center of the particle never gets out of the region 0 ~< 0 ~< rc (because of the 
periodic boundary conditions, the rightmost part of the particle reappears 
at the left). 

4. S U R V I V A L  T I M E S  

We can study survival times by considering slightly different boundary 
conditions. Let us put absorbing boundaries at 0 = 0 and 0 = re. Then, 
(OIP(O-)} = 0 when 0 = 0 and 0 = g. The eigenstates of the diffusion 
operator s on the interval 0 ~< 0 ~< ~ are given by 

Ck(0) = sin(k0) (4.1) 

where k is an integer with range 1 ~< k ~  ~ .  The eigenvectors satisfy the 
eigenvalue equation 

(4.2) 

4.1. Transi t ion  Opera tors  

In order to study the relaxation of the Brownian particle on the 
interval 0---, n, we can evaluate the Floquet transition operator 

V()o, T) = exp(Ts exp( -- 2s (4.3) 

with respect to eigenstates I k } of the diffusion operator. We write 

Vk,,k ---- (k'l  exp(Ts exp(--2s Ik} 

f ~  I R =exp(-k2T) d~ (k' O,)[exp(--i)op)](tpLlk) (4.4) 
- - o o  

( L We now need expressions for the states ( k l 0 ,  e )  and ~0~lk). Let us first 
consider (kl  0 f ) .  We can write 

Ji (klO~) = dO (klO)(OtO~} 

1 dx sin k ~b(x) + e iux (4.5) 
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Similarly, 

( L~lk)=~l;~_oo dxsech(x) sin{k[fb(x)+;l}e-iUx (4.6) 

The Floquet transition matrix becomes 

Vk,,k = (k'] exp(Ts e x p ( - - 2 s  

2 
e x p ( - k 2 T )  foo dx sech(x) 

71; - - o o  

This transition matrix can be used to study the distribution of probability 
after N kicks. 

In Fig. 4 we show the topology of the kick transition matrix 
U~,,~= ( k ' e x p ( - - 2 s  [k) for 2--0.1, 1, and 2. For small kick strengths 
only a few neighboring modes are coupled through the kick. However, .for 
larger kick strength many neighboring modes in the Floquet transition 
matrix are coupled. 

In Fig. 5 we show the Floquet transition matrix for kick strength 
2 =  1.0 and period T=0.01.  Comparison between Figs. 4 and 5 shows 
clearly the damping of higher modes due to diffusion. 

4.2. Average Survival  Times 

Let us now assume that the rotor lies at 0 = re/2 at time t = 0 - .  This 
corresponds to an initial condition P(O, 0 )= f i (0 - r c /2 )  [P(O, 0 ) is 
actually a conditional probability]. We write 

e(o, 0 -  ) = ~ bk(0-)  ~b~(0) = f i (0 -  ;r/Z) (4.8) 
k = l  

It is easy to show that 

, 149, 

In Fig. 6 we show the time evolution of the rotor, given that it is initially 
localized at 0 = re/2. The upper box shows the initial state using 40 diffusion 
eigenstates. The middle box shows the state of the rotor for kick strength 
2=0 .1  after N =  1, 10, and 20 kicks. We have used T=0.001 to keep the 
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damping of lower modes small. In the bottom box, we show the state of the 
rotor for kick strength 2 = 1.0 after N = 1 and 2 kicks. In the middle box, 
the rotor is more spread out than in the bottom box because the higher 
modes have had a chance to decay away. 

The probability that the rotor has "survived," that is, has not hit the 
absorbing boundaries before time t = NT-, is given by 

Fig. 4. Topology of the kick transition matrix Uk, k (for k ' = m  and k=n)  for (a) 2=0.1,  
(b) 2 = 1.0, (c) 2 = 2.0. 

822/70/1-2-15 



Fig. 5. Topology of the Floquet transition matrix for 2 = 1.0 and T =  0.01. 
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Fig. 6. Time evolution of the rotor for T =  0.001, given that it is initially localized at 0 = ~/2. 
The upper box shows the initial state using 40 diffusion eigenstates. The middle box shows the 
state of the rotor for kick strength 2 = 0.1 after N =  1, 10, and 20 kicks. The bot tom box shows 
the state of the rotor for kick strength 2 = 1.0 after N = 1 and 2 kicks. (The regions of negative 
probability occur because we have truncated the Fourier series after 40 terms. These regions 
go to zero as the number  of terms in the Fourier series goes to infinity.) 
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P ( N T - )  = dO P(O, N T  ) 

= ~ ~ bk(NT-  ) 
k= 1 (odd) 

= ~ k=  l(odd) k '=  l(odd) ~ [ VN(T)Jk'k' sin (4.10) 

It is possible to compute the average survival time <t>. It is defined by 

2N=~ N P ( N T  ) <t> - (4.11) 
Z~=~ P ( N T  ) 

In Fig. 7 we plot < t > as a function of 2 for different values of the period 
T. The survival time suddenly drops to very low values as we increase the 
kick strength 2. When the kick strength is large enough to kick the rotor 
into the neighborhood of the singularity (where the absorbing boundary is 
located) higher eigenstates dominate and decay very fast. In Fig. 8 we plot 
the survival probability as a function of the number of kicks for 2 = 0.1 and 
several different periods T. The results of Figs. 7 and 8 were obtained using 
a finite-size Floquet transition matrix, but are good because of the rapid 
decay of the matrix for large values of n (see Fig. 5). 

2O 

~ T=.I 
15 11 -----o---- T:.01 

< t  > =. 

lO 

5 

o i 
0.0 015 I ~.0 I .5 2.0 

Fig. 7. The average survival time ( t>  versus kick strength 2. 

822/70,/1-2-15" 
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Fig. 8. A plot of the survival probability P(NT-) for three different periods T and kick 
strength 2 = 0.1. 

5. C O N C L U S I O N  

The Brownian motion described by Eq. (1.4) is unusual because the 
influence of the diffusion process and the driving force are completely 
independent of one another. We have found that the kick operator has 
singularities at points 0 = 0 and ~, and surprisingly it has a continuous 
spectrum. The eigenstates of the kick operator have an infinite number of 
oscillations in the neighborhood of the singularities, and the Brownian 
rotor can never move past the singularities. If we analyze the behavior of 
the Brownian rotor in terms of eigenstates of the diffusion operator (which 
has a discrete spectrum), then as the Brownian rotor moves closer to the 
singularities, the very short-wavelength diffusion eigenstates play an 
increasingly important role. 

The behavior of the delta-kicked rotor gives us some insight into the 
results of refs. 1-3, where the softly kicked rotor was discussed�9 In softly 
kicked Brownian motion, diffusion acts continuously while the force acts. 
Therefore, the Fokker-Planck equation does not have singularities. 
However, some of the behavior seen here appears to remain. There is a 
fast drop in the first passage time when the rotor reaches the "singular" 
region, and the Floquet spectral statistics undergoes level repulsion. The 
level repulsion very likely results from the greater connectedness and 
growth of importance of higher diffusion eigenstates in the singular regions. 
Certainly, the behavior observed in refs. 1-3 is consistent with what has 
been observed here. 
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A P P E N D I X  

A.1.  O r t h o n o r m a l i t y  

We will show that Of(O) and 0~(0) are orthonormal on the interval 
0 ~< 0 ~< ~. Consider the integral 

? It= do  o ,los(olof,) 
"JO 

=--2rcfol ~ ~ d 0  exp I - i # '  in (tan ~)1 ex p ~Li/t In (tail ( ~ ) ]  (A.1) 

Now make the change of variables 

x = l n  ( t an~)  (A.2) 

Then Eq. (A.1) becomes 

I t =~-~ dx e-'("'-~)~ = fi(#' - #) (A.3) 
oo 

A.2. C o m p l e t e n e s s  

We wish to check if ~ d# 0ff(0) L* , 0u (0)=~(0  0'). Let us examine 
the integral 

S 12 = d# dO f(O) Of,(O) O ,,c* ) 
- - o o  

= dx g(x) dp e ~u(~ x') (A.4) 
o o  

where f(O) = g(x). But from the definition of the Dirac delta function, 

Ia= dx g(x) g ) ( x - x ' ) =  g(x ' )= f(0') (A.5) 
- - o o  

Thus, the eigenstates are complete! 
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